metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.3D20, C5⋊4C2≀C4, (C2×D4).5D10, C4.D4⋊5D5, (C2×C20).13D4, (C23×D5)⋊2C4, C23.D5⋊3C4, C23.3(C4×D5), C23⋊Dic5⋊7C2, C23⋊D10.4C2, (C22×C10).12D4, C10.32(C23⋊C4), (D4×C10).170C22, C22.12(D10⋊C4), C2.12(C23.1D10), (C2×C4).1(C5⋊D4), (C5×C4.D4)⋊11C2, (C22×C10).3(C2×C4), (C2×C10).69(C22⋊C4), SmallGroup(320,33)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.3D20
G = < a,b,c,d,e | a2=b2=c2=1, d20=c, e2=a, ab=ba, ac=ca, dad-1=abc, ae=ea, dbd-1=ebe-1=bc=cb, cd=dc, ce=ec, ede-1=acd19 >
Subgroups: 606 in 94 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C22⋊C4, M4(2), C2×D4, C2×D4, C24, Dic5, C20, D10, C2×C10, C2×C10, C23⋊C4, C4.D4, C22≀C2, C40, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, C2≀C4, D10⋊C4, C23.D5, C23.D5, C5×M4(2), C2×C5⋊D4, D4×C10, C23×D5, C23⋊Dic5, C5×C4.D4, C23⋊D10, C23.3D20
Quotients: C1, C2, C4, C22, C2×C4, D4, D5, C22⋊C4, D10, C23⋊C4, C4×D5, D20, C5⋊D4, C2≀C4, D10⋊C4, C23.1D10, C23.3D20
(2 22)(3 23)(6 26)(7 27)(10 30)(11 31)(14 34)(15 35)(18 38)(19 39)
(2 22)(4 24)(6 26)(8 28)(10 30)(12 32)(14 34)(16 36)(18 38)(20 40)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 20)(2 39 22 19)(3 18 23 38)(4 17)(5 16)(6 35 26 15)(7 14 27 34)(8 13)(9 12)(10 31 30 11)(21 40)(24 37)(25 36)(28 33)(29 32)
G:=sub<Sym(40)| (2,22)(3,23)(6,26)(7,27)(10,30)(11,31)(14,34)(15,35)(18,38)(19,39), (2,22)(4,24)(6,26)(8,28)(10,30)(12,32)(14,34)(16,36)(18,38)(20,40), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,20)(2,39,22,19)(3,18,23,38)(4,17)(5,16)(6,35,26,15)(7,14,27,34)(8,13)(9,12)(10,31,30,11)(21,40)(24,37)(25,36)(28,33)(29,32)>;
G:=Group( (2,22)(3,23)(6,26)(7,27)(10,30)(11,31)(14,34)(15,35)(18,38)(19,39), (2,22)(4,24)(6,26)(8,28)(10,30)(12,32)(14,34)(16,36)(18,38)(20,40), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,20)(2,39,22,19)(3,18,23,38)(4,17)(5,16)(6,35,26,15)(7,14,27,34)(8,13)(9,12)(10,31,30,11)(21,40)(24,37)(25,36)(28,33)(29,32) );
G=PermutationGroup([[(2,22),(3,23),(6,26),(7,27),(10,30),(11,31),(14,34),(15,35),(18,38),(19,39)], [(2,22),(4,24),(6,26),(8,28),(10,30),(12,32),(14,34),(16,36),(18,38),(20,40)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,20),(2,39,22,19),(3,18,23,38),(4,17),(5,16),(6,35,26,15),(7,14,27,34),(8,13),(9,12),(10,31,30,11),(21,40),(24,37),(25,36),(28,33),(29,32)]])
35 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 5A | 5B | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 20A | 20B | 20C | 20D | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 4 | 4 | 20 | 20 | 4 | 40 | 40 | 40 | 2 | 2 | 8 | 8 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
35 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | D5 | D10 | C5⋊D4 | C4×D5 | D20 | C23⋊C4 | C2≀C4 | C23.1D10 | C23.3D20 |
kernel | C23.3D20 | C23⋊Dic5 | C5×C4.D4 | C23⋊D10 | C23.D5 | C23×D5 | C2×C20 | C22×C10 | C4.D4 | C2×D4 | C2×C4 | C23 | C23 | C10 | C5 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 1 | 2 | 4 | 2 |
Matrix representation of C23.3D20 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 40 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 1 | 1 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
3 | 23 | 0 | 0 | 0 | 0 |
21 | 24 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 40 | 39 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 40 |
17 | 23 | 0 | 0 | 0 | 0 |
7 | 24 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 40 | 39 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 40 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,1,0,0,0,40,0,0,0,0,0,0,1,40,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,1,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[3,21,0,0,0,0,23,24,0,0,0,0,0,0,0,1,0,0,0,0,0,1,40,1,0,0,1,40,0,0,0,0,0,39,0,40],[17,7,0,0,0,0,23,24,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,1,0,0,1,40,0,0,0,0,0,39,0,40] >;
C23.3D20 in GAP, Magma, Sage, TeX
C_2^3._3D_{20}
% in TeX
G:=Group("C2^3.3D20");
// GroupNames label
G:=SmallGroup(320,33);
// by ID
G=gap.SmallGroup(320,33);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,141,36,422,184,346,297,851,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^20=c,e^2=a,a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,a*e=e*a,d*b*d^-1=e*b*e^-1=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*c*d^19>;
// generators/relations